

DET MEDICINSKE SELSKAB

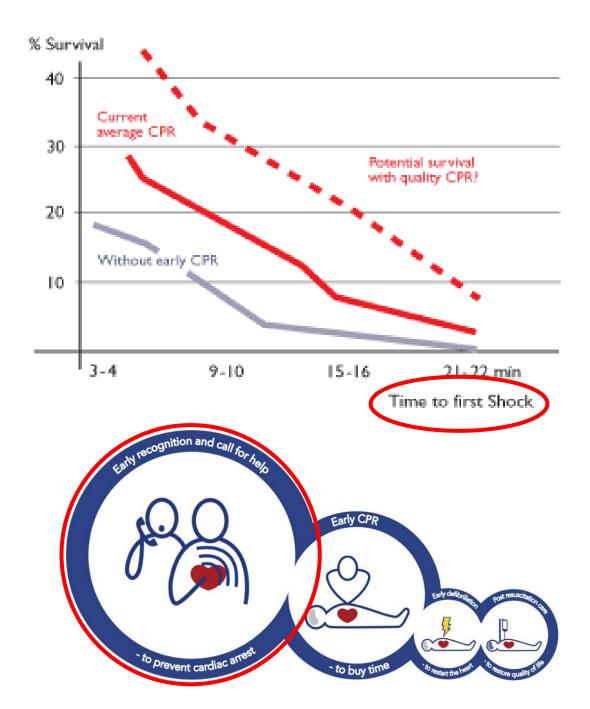
Fredrik Folke

REGION

MD, Phd, Clinical Professor Copenhagen Emergency Medical Services Herlev Gentofte Hospital University of Copenhagen, Denmark

E-mail: Fredrik.Folke@ regionh.dk

in FredrikFolke



Can Al detect cardiac arrest before the dispatcher?

Declaration of interest

- Received research grants from:
- The Danish TrygFonden
- The Danish Heart Foundation
- Novo Nordisk Foundation
- Copenhagen EMS has received unrestricted research grant from the Laerdal Foundation

Time is critical in cardiac arrest survival!

....

The challenge for cardiac arrest recognition

1 % of all emergency calls are cardiac arrests

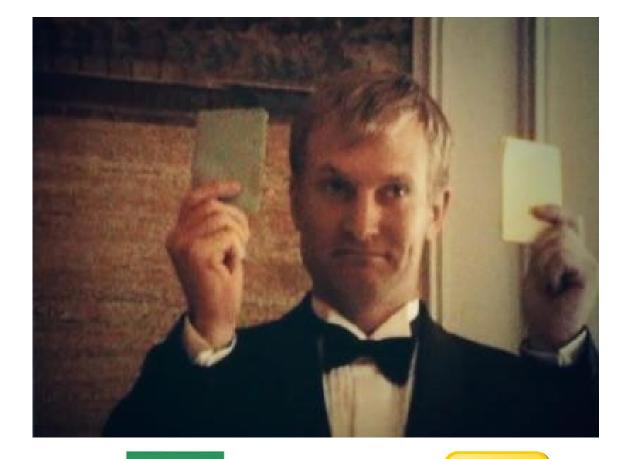
25 % of cardiac arrest identified by caller

Another 50 % identified by call taker during the call

25 % initially missed until arrival of ambulance

Early recognition is **VERY** important to outcome!

.....


Solutions

Public awareness and education to identify cardiac arrest

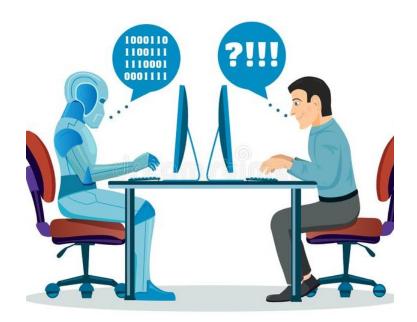
Dispatcher training in identifying cardiac arrest

Can artificial intelligence / machine learning do better?

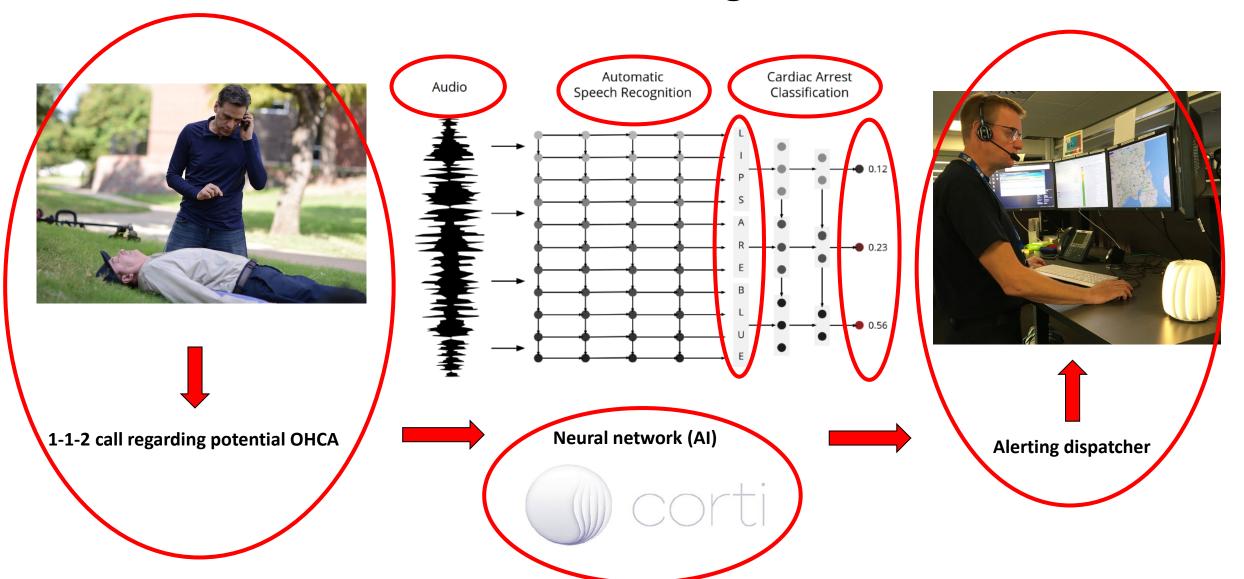
THOMAS VINTERBERGS FESTEN

ALLE FAMILIER HAR EN HEMMELIGHED

THOMAS VINTERBERGS FESTEN


LLE FAMILIER HAR EN HEMMELIGHEI

Green


Talks

Human vs. Machine

Use pattern recognition	Remember every case	Years of experience in one model
Processed in no time	No human bias	AI better in cardiac arrest recognition?

Machine Learning in Cardiac Arrest Recognition - Artificial Intelligence -

Clinical paper

Machine learning as a supportive tool to recognize cardiac arrest in emergency calls

Stig Nikolaj Blomberg^{a,b,*}, Fredrik Folke^{a,b,c}, Annette Kjær Ersbøll^d, Helle Collatz Christensen^a, Christian Torp-Pedersen^{e,f}, Michael R. Sayre^g, Catherine R. Counts^g, Freddy K. Lippert^{a,b}

^a Emergency Medical Services Copenhagen, Denmark

- ^b Department of Clinical Medicine, University of Copenhagen, Denmark
- ^c Department of Cardiology, Gentofte University Hospital, Denmark
- ^d National Institute of Public Health, University of Southern Denmark, Denmark

^e Department of Clinical Epidemiology, Aalborg University Hospital, Denmark

¹ Department of Health Science and Technology, Aalborg University, Denmark ⁹ Department of Emergency Medicine, University of Washington, United States

Clinical paper

2

Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls: A retrospective study

Fredrik Byrsell^{a,b,*}, Andreas Claesson^a, Mattias Ringh^a, Leif Svensson^a, Martin Jonsson^a, Per Nordberg^a, Sune Forsberg^a, Jacob Hollenberg^a, Anette Nord^a

Check for updates

^a Department of Medicine, Centre for Resuscitation Science, Karolinska Institutet, Solna, Sweden ^b SOS Alarm AB, Stockholm, Sweden

Clinical pape

Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls: A retrospective study

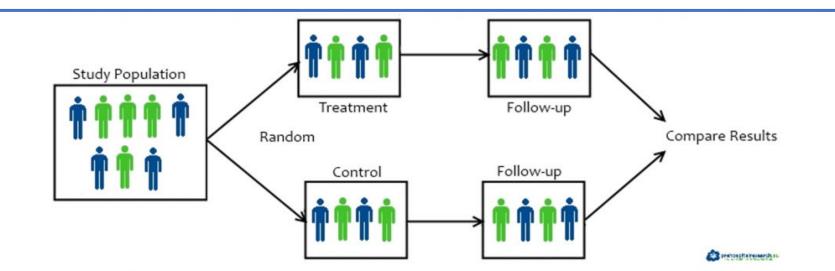
Fredrik Byrsell^{a, b, *}, Andreas Claesson^a, Mattias Ringh^a, Leif Svensson^a, Martin Jonsson^a, Per Nordberg^a, Sune Forsberg^a, Jacob Hollenberg^a, Anette Nord^a ^a Oppartment of Medicine, Centre for Resuscitation Science, Karolinska Institutet, Scina, Sweden ^b 30SA harm AS. Societation, Sweden Sample: 108,607 emergency calls, 918 (0.8%) were cardiac arrests Sample: 43,832 emergency calls, 3944 (9.0%) were cardiac arrests

Machine learning model had a significantly higher sensitivity (72.5% vs. 84.1%, p < 0.001) than dispatchers in OHCA recognition

Machine learning model recognized 36% within 1 min compared with 25% by dispatchers, and recognition rate at any time during the call was 86% for ML and 84% for dispatchers

Al surpassed humans in detecting cardiac arrest during live emergency calls (faster and higher sensitivity) – but with lower specificity

LLE FAMILIER HAR EN HEMMELIGHEI



Original Investigation | Emergency Medicine

Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services A Randomized Clinical Trial

Stig Nikolaj Blomberg, MsC; Helle Collatz Christensen, MD, PhD; Freddy Lippert, MD; Annette Kjær Ersbøll, MsC, PhD; Christian Torp-Petersen, MD, PhD; Michael R. Sayre, MD; Peter J. Kudenchuk, MD; Fredrik Folke, MD, PhD

What did the randomised study show?

Network Open .

Original Investigation | Emergency Medicine

Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services A Randomized Clinical Trial

Stig Nikolaj Blomberg, MsC; Helle Collatz Christensen, MD, PhD; Freddy Lippert, MD; Annette Kjær Ersbøll, MsC, PhD; Christian Torp-Petersen, MD, PhD Michael R. Sayre, MD; Peter J. Kudenchuk, MD; Fredrik Folke, MD, PhD The machine learning model assessed all 112-calls. Identified OHCA calls were randomized 1:1 to be shown or not

169 049 emergency calls were examined, 654 confirmed OHCAs (336 control vs. 318 intervention)

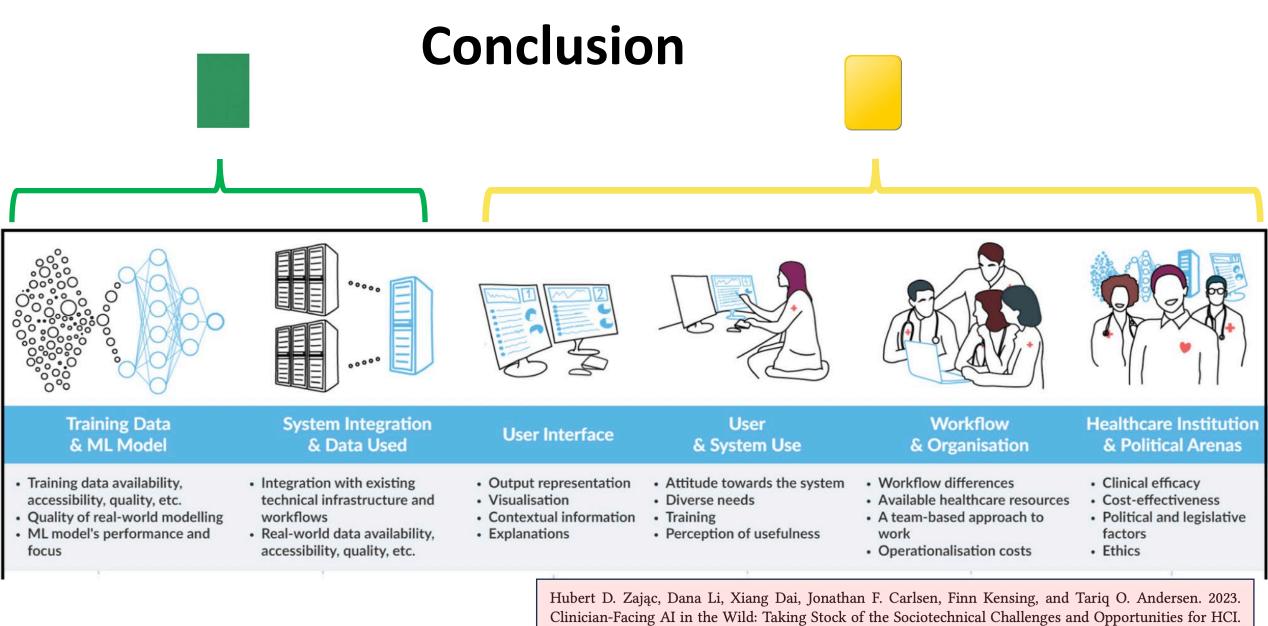
Al surpassed humans in detection cardiac arrest during live-calls: **85.0% vs. 77.5%,** but *NO* improvement for dispatcher reconition in the Al assisted group

No improvements in CPR instructions started in the AI assisted group vs. in control: **64.8% vs. 61.9%** (*P* = .47)

The alert from AI did *not* result in an increased number of correct recognitions of OHCA by dispatchers or improved bystander CPR instructions RESUSCITATION 183 (2023) 109689

Clinical paper

When the machine is wrong. Characteristics of true and false predictions of Out-of-Hospital Cardiac arrests in emergency calls using a machinelearning model



Stig Nikolaj Blomberg^{a,b,*}, Theo W. Jensen^{a,b}, Mikkel Porsborg Andersen^f, Fredrik Folke^{a,b,d}, Annette Kjær Ersbøll^{a,e}, Christian Torp-Petersen^{f,g}, Freddy Lippert^{a,b,h}, Helle Collatz Christensen^{a,b,c} **Clinical paper**

When the machine is wrong. Characteristics of true and false predictions of Out-of-Hospital Cardiac arrests in emergency calls using a machinelearning model

169,068 calls-

ACM Trans. Comput.-Hum. Interact. 30, 2, Article 33 (March 2023), 39 pages.