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PRECISE- PRECISION PSYCHIATRY INITIATIVE

DATA IS GOLD — bigger and better sam

* The most comprehensive nationwide registers (diagnoses, anti- -
infectious prescriptions, blood and CSF tests) -.

* Electronic Health Records population-based from % of Denmark

 The world’s largest genotyped cohort with environmental data
iPSYCH: 135,000 E-)
Copenhagen Hospital Biobank: 500.000

 The world’s largest CSF biobank (>20,000 people) with blood me
L Asbala
samples from the same individuals (SSI)

 DanFund population-based cohort with phenotyping, blood, 6/
microbiome and genetics (N~10.000) "

* PSYCH-FLAME clinical cohort with extensive psychopathology I~
and biological measurements (CSF, blood, microbiome), with lu}
wearables, speech and facial recordings (N~500) o



PRECISION PSYCHIATRY INITIATIVE (PRECISE)

Challenge:
Currently, choice of treatment for mental disorders is determined by trial and error

using a “one-size-fits-all” approach resulting in an unacceptably large proportion
of non-responding patients.

Limitations of prior research:
Focus on single exposures and single outcomes, not accounting for the complexity of
mental disorders.

Solution:

Leveraging on the wealth of data and novel data analytical approaches now available.
Developing more accurate predictive models integrating multiple objective measures
would enable true precision psychiatry improving clinical decision making and treatment
response.



Outcomes

Prediction models

Diagnoses
Acute re-admissions
Suicide and attempts

Treatment outcomes

Novel insights

Coercion

Adverse events
Treatment response
Patient trajectories

Missing tests according
to guidelines

Who and when are
brain scans indicated

|dentify novel clinical
markers and biomarkers
associated

Identify modifiable
factors with a
prevention potential

Identify novel clusters
within or across current
diagnoses

 —

Obtain novel ground-
breaking insights into
mental disorders

Innovations

Decision support tools

Improved prevention
and treatment of
mental disorders

Enhance the national Al
competencies in the
Region

Facilitate the use of EHR
data

Leaders internationally
within precision
psychiatry




At First Episode Psychosis: predicting of A) Recovery,

B) Social recovery, C) Vocational recovery, and D) Quality of life
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Psych-Flame: Identifying immune subtypes

'Prior biological and |
\ clinical knowledge |
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Clustering of schizophrenia and depression and HC (N=42,103)

Based on information prior to the diagnosis in the registers and genetics

Overview of the VAE framework for data integration 6 clusters overall according to severity
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Particularly family history, genetics and birth related factors are

important to separate from the background population

Diagnoses overall AUC=0.81 Variable importance grouped
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Deep Learning for cross-diagnostic prediction
of mental disorder diagnosis and severity using

nationwide registry and genetic data (N=78.445)

Variable importance
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Performance Measures in the Multiclass Prediction Model

Class Accuracy Precision Sensitivity Specificity AUC

Model 2 (cross-diagnostic prediction including population control group)

Back_pop 0.68 0.52 0.48 0.78 0.73

ADHD 0.80 0.35 0.34 0.89 0.80

ASD 0.80 0.42 0.50 0.86 0.81

MO 0.75 0.50 0.47 0.84 0.71

BD 0.96 0.18 0.26 0.98 0.77

sCL 0.90 0.40 041 0.95 0.82

Maodel 3 (cross-diagnostic prediction of cases only)

ADHD 0.74 0.42 0.39 0.84 0.73

ASD 0.78 0.56 0.58 0.84 0.83

MDD 0.75 0.66 0.67 0.79 0.80

BD 0.94 0.18 0.24 0.97 0.81

SCZ 0.87 0.44 0.40 0.93 0.80
Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ASD, autism (recall), specificity, and AUC for each diagnostic category in the multiclass
spectrum disorder; AUC, area under the curve; Back_pop, background models. The evaluations are done by considering each class/diagnosis
population control; BD, bipolar disorder; FN, false negative; FP, false positive; separately in the model and collapsing all other classes into one. In the table,
MDD, major depressive disorder; 5CZ, schizophrenia spectrum disorders; accuracy iscalculated as TP+ TN f TP+ TN + FP + FN; precisionas TP [ TP +
TN, true negative; TP, true positive. FP; sensitivity as TP/ TP + FN; and specificity as TN / TN +FP,

* Performance as accuracy, precision (positive predictive value), sensitivity




Register prediction of suicidal attempts and suicide

Predicting suicidal behavior Predicting suicide
- Performance matrix
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Register prediction study of psychiatric re-admissions

Acute Psychiatric Re-admission Risk at Discharge

(APRAD)
APRAD
Number of Acute Psychiatric Re-admissions last 12 months i
Diagnosis 0 1 2.5 >5
82 - AUC: 0.77
Disorder of personality and (0.76-0.78)
behavior (F60-69) an
Schizophrenia and related “ o ” ,54_,_;.._;,:' - m
disorders (F20-29)
Affective disorders (F30-39)
Disorder due to substance use 32
(F10-19)
Other mental disorder diagnosis 32
<4 1-4 <4 | 14 <4 | 14 <4 | 14 1
Absolute risk of acute psychiatric S O LGS 1B ST T
re-admission
35-44% 45-64% =>65%
Bach-Mortensen et al. In review wd-:;'-'aucqss»&cu'

25-34%
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SP praediktionsmodel af akutte genindlaeggelser

Model Accuracy | Sensitivity = PPV Specificity = NPV Fl-score MCC AUC
1F-model unstable pathway 79.1% 40.7% 73.9% 94.3% 80.0% 0.525 0.435 0.68
1F-model previous acute 77.3% 52.2% 61.8% 87.2% 82.1% 0.566 0.416 0.74
readmissions

2F-model Unstable + prev acute | 80.0% 58.0% 67.0% 88.7% 84.2% 0.622 0.489 0.78
3F-model register’s* 76.6% 55.2% 59.4% 85.0% 82.7% 0.573 0.412 0.76
5F-model register’s* 75.9% 57.5% 57.5% 83.2% 83.2% 0.575 0.407 0.77
5F-model + unstable pathway 79.8% 58.0% 66.5% 88.4% 84.1% 0.620 0.485 0.79
Best model — 9th May 79.3% 62.0% 64.1% 86.2% 85.1% 0.630 0.487 0.80
Best model - 25th May 80.0% 73.9% 78.5% 84.6% 81.0% 0.761 0.590 0.85
(preliminary results)

Detection and security of acute
readmissions as well as overall
model performance is quite
85% non-acute discharges will be good
detected and 8 out of 10 times
* - 3F-model: Length stay, primary diagnosis, number previous acute that a non-acute is predicted, it

readmissions (1 year) ill
- 5F-model: 3F-model + Substance use diagnosis + F2 diagnosis will be correct

Almost 75% of them will be
detected, and 8 out of 10 predicted
acute readmissions are correct



Timeline & choosing wards/departments (acute re-admissions)

Choosing wards for phase 1: Suggestions

- Stable leadership pre/during/post testing - 1 inpatient ward

- Stable acute re-admission rates - linpatient and 1 out patient team

_ Ward that would like to work with the el e
oroject independent 1 inpatient ward + 1 outpatient ward

Timeline:

July/august: error finding in the model script and data loading when automatized

September: RHP quality and data team helps with variable and definition checks, and with their
inputs from prior work including list of potential interventions

End October: final model 1.0 ready for testing and made as Python package ready to load
October/November: Decide if model is ready for clinical testing

Nov-Dec: Implement model in SP (informed by SP teams’ prior experience and learnings)
January: SP module ready for phase 1 testing

Jan-March: phase 1 testing

March 2024: Evaluation of testing and if ready to proceed to phase 2 larger testing and potentially
with further improved model based on the clinical feedback and with add-on NLP approach



Clinical testing and implementation — new RHP methodology?

Phase 1: small scale clinical testing

1-3 clinical wards (dedicated to using it)
Feasibility & acceptability

Can we make it work in clinical practice?
Do we see indications of results? (visual
inspection of acute readmission graph)

Phase 2: medium scale clinical testing

Preliminary indications of efficacy of
model in clinical use (non dedicated users)
Further evaluate potential side effects
Calculate needed sample size for phase 3
based on the effect estimates

Phase 1: Pilot

Typisk pa et afsnit.

Arbejdsgang veerktgj udvikles og resultater
folges med ekstra stor statte.

Kan vi se resultater og forstar vi hvorfor?
Evaluering og beslutning om at fortseette

Phase 2: Forberedelse til bred implementering

Kan vi fa det til at virke andre steder?
Udvikling af metode og veerktgjer, samt
standardiseret implemeneteringsplan til bred
Implementering

Implementering pa 3-5 afsnit

Evaluering og beslutning om at fortseette



Clinical testing and implementation — new RHP methodology?

Phase 3: Efficacy trial Phase 3: Bred implementering
- Predefined power calculation based on - Udrulning integreres i hospitalets
phase 1-2 and minimum N and time ledelseskaede og der saettes fokusmal for
- As compared to TAU Implementering.
- Randomized or block-randomization - Fremdrift fglges af HL og CL.

- (But when more models are together it
should be placebo/active controlled)

IMPLEMENTATION IMPLEMENTATION
Phase 4: long-term follow-up Phase 4: Fastholdelse af resultater
- Post implementation evaluation of benefits and - Opnaede resultater falges som hospitalsmal.
potential side effects - Korrigerende handlinger traeffes ved behov.

- Tracking model performance and likely re-
training/finetuning of model



Testing and validation framework

HYPOTHESIS

Internal EHR testing
5-fold cross validation on data from the Capital Region of

Denmark (WP2-5)

External EHR testing Denmark
Validation on EHR data from the Zealand Region (WP2-5)

|

Prospective testing on live EHR data from the Capital
Region of Denmark

Within PRECIS-EHR

Nationwide register data
Superiority compared to prediction models developed on
the nationwide Danish registers from our PRECISE project

External testing other countries
- EPICEHR testing in the Netherlands and the US
- Brain imaging samples from ENIGMA Consortium and

the UK Biobank

Outside PRECIS-EHR

v

Phase 1: Small scale clinical testing at 1-2 clinical wards.
Clinical feasibility and potential adverse effects

|

Phase 2: Medium scale clinical testing at 1 department.
Preliminary indications of efficacy of model in clinical use
and further evaluation of potential side effects

Phase 4: Long-term follow-up of benefits and potential
side effects

IMPLEMENTATION

1

—— | Phase 3: Efficacy trial of new treatment compared to

the standard treatment




Digital phenotyping of Mental Disorders

Quantifying the subjective psychiatric symptoms for better treatment

Challenge: Currently, there are no truly objective measurement in the
psychiatric examination of the spoken words, facial expression and
behavior.

Solution: Conduct novel digital phenotyping of mental disorders with Al

Part of Precision Psychiatry Initiative (PRECISE): Voice and speech
analytics, facial analytics and wearables to predict psychiatric diagnosis
and outcomes — in progress on the PSYCH-FLAME study

Pilot study: For the first time use large-scale audio data linked with EHR
available from Copenhagen Emergency Medical Services calls
(more than 5 million stored calls linked with EHR)

Perspective: Decision support tools assisting the health care professional
while having the dialogue with the patient



Clinical Al Test Center

Big data derived prediction models
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Clinical Test and Knowledge Center
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B1. Understanding Patient and unmﬁ"/
Clinician Needs for Data-Driven

Treatments

- Panel of key stakeholders and end-users

- Qualitative investigations among focus groups
- Large-scale questionnaire investigations

- Investigate legislation and regulatory barriers
- Include novel discoveries

&y §

Towards Clinical
Impact of EpiPsych
Findings

B2. Creating a Knowledge Center for
Effective Data-driven Treatment and
prediction models :

B3. Clinical Test Center h"&
- “laboratory” evaluating feasibility, acceptability and
efficacy of secured webportal for individual risk predictions
that can then be tested and implemented on EHR

&




Computer assisted risk assessment for precision medicine

The Heart Algorithm; Ischemic Heart Disease (IHD)
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Not only prediction...

* We need to stratify patients based on meaningful variables and
ideally causal factors to achieve reproducible high accuracy and
precision justifying implementation

* Cross-disciplinary approach that includes: mental health experts,
bioinformaticians, engineers, data science and input from the end-
users etc.

* Implementation should first occur after successful clinical testing

Low accuracy
Low precision

Low accuracy

High accuracy High accuracy
High precision Low precision High precision




IMPACT

Paradigmatic shift

* Increase our understanding of mental disorders and the predictability of outcomes
* Identify causal factors for mental disorders

» Developing data driven decision support tools for mental disorders

Translational impact

« Identification of novel risk factors and clinical (bio)markers associated with
mental disorders

« Paving the way for new treatment principles

* Improved diagnostics and treatment

 Striving towards implementation

Vision:
* Objective biomarker-based treatment and data driven decision support based on a
multitude of objective clinical markers for more personalized and better treatment



Thank you for your attention!

Thanks to my collaboraters: Mental Health
Mental Health Center Copenhagen, Copenhagen University Hospital: Services
Rune Christensen, Rosa Allesge, Enric Coppulo, Sara Nielsen, Terne Jakobsen,
Jonas Meisner, Merete Nordentoft, Trine Madsen,
Human Protein Variation Group, University of Copenhagen: =
Simon Rasmussen
Danish Technical University (DTU): I r
Line Clemmensen
Centre for Register-based Research, Aarhus University:
Preben Mortensen, Liselotte Petersen, Marianne Pedersen, Carsten Pedersen
Wes Thompson, Thomas Werge, Morten Krebs, Yunpeng Wang
Copenhagen Emergency Medical Services:
Helle Christensen, Frederik Folke | PS VAC H

Institute of Biological Psychiatry, Copenhagen University Hospital
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