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Lifelong multimorbidity journeys in disease space

[ Disease variants Background variation Somatic mutations Environment]

* e £ 4=

Hu, Thomas & Brunak
Nature Rev. Genetics 2016



The route towards disease impacts risks and outcomes

Diagnosis trajectories of prior multi-
morbidity predict sepsis mortality,
Beck et al. Sci .Rep. 2016
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National Patient Registry (~7M Danes
ICD-10 diagnoses as a function of age

(ICD-10 era, 1994-2019)
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Danish population-wide diaghoses from 1977-2019

ICD-8/ICD-10 periods, 9.5 million patients in the national registry

Count of assigned diagnoses

3,000,000 -

2,500,000 4

2,000,000 -

1,500,000

1,000,000 -

500,000

ICD-8
8,596 codes

ICD-10
20,693 codes

ICD-10 chapter

Pedersen et el.
Eur. J. Epi. 2023,



Death registry data, 1943-2018

Main cause of death (counts)

Death certificates from Denmark, ~75 years of data 1943-2018
Up to 8 contributing causes of death

1350

Principal coding systems: —— Year
< 1994: ICD-8 (mapped to ICD-10) _ _
>=1994: |CD-10 Requires better mapping

Reguant et al., in preparation 2023



Diabetes trajectory network
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Disease trajectory network of depression patien
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ICU patient mortality prediction from machine
learning based aggregation of time scales
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Nielsen et al., Lancet Dig Health, 2019
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ICD-10 diagnoses, admission- and discharge dates
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ICU mortality prediction performance
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Top ten network features Top three interaction partners
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Risk prediction in ischemic heart disease

HEALTHY vs ISCHEMIC HEART

Blocked Lumen in Branch
of Left Coronary Artery

Blockages in the
coronary arteries

HEALTHY HEART ISCHEMIC HEART

www.mediflam.com



Why Pancreatic Cancer?

Proportion of Cases Diagnosed at Each Stage, All Ages
Pancreatic Cancer (C29) Proportion of Cancer Cases by Stage at Diagnosis,
England, 2018
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Prediction of pancreas
cancer risk —training on

Danish data, replication
in US data

Disease histories from

* Danish National Patient Registry (DNPR), covering 8.6 M
patients between 1977-2018 (6.1 M controls, 24,000
cases, av. 23 yrs of history)

* Veteran Affairs CDW database, covering 2.9 M patients
1999-2020 (1.9 M controls, 3,800 cases, av. 12 yrs of
history)

Pancreatic cancer risk predicted from disease trajectories using deep learning
Placido, Yuan, Hjaltelin, ..., Brunak & Sander, Nature Medicine 2023
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Training, development validation, test
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Input data encoding:
— diagnosis trajectory, dates and age
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Results - Model comparison

Clinical utility assessed with AUROC and Relative Risk
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Results - Prediction intervals

Clinical utility assessed with AUROC and Relative Risk
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Different Denmark & US VA EHR features

A Age distribution B  Trajectory characteristics (DK) ~ C Trajectory characteristics (US-VA)

Characteristics of Danish and US-VA dataset
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Different Denmark & US VA EHR coding features

B  Trajectory characteristics (DK)
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Pancreatic cancer risk predicted from disease trajectories using deep learning
Placido, Yuan, Hjaltelin, ..., Brunak & Sander, Nature Medicine 2023



Feature
Importance
ranking using
explainability
methods
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Other diseases of biliary tract

Medical observation and evaluation
for suspected diseases and conditions

Other diseases of pancreas

Other diseases of biliary tract

Abdominal and pelvic pain

Other diseases of pancreas

Abdominal and pelvic pain

Non-insulin-dependent diabetes mell
itus

Malignant neoplasm of other and uns
pecified parts of biliary tract

Malignant neoplasm of other and uns
pecified parts of biliary tract

Non-insulin-dependent diabetes mell

Unspecified jaundice

Other diseases of pancreas

Abdominal and pelvic pain

Malignant neoplasm of other and uns
pecified parts of biliary tract

Abdominal and pelvic pain

Secondary malignant neoplasm of res
piratory and digestive organs

Secondary malignant neoplasm of res
piratory and digestive organs

Unspecified jaundice

Malignant neoplasm of other and uns
pecified parts of biliary tract

Symptoms and signs concerning food
and fluid intake

Non-insulin-dependent diabetes mell
itus

Other functional intestinal disorde
rs

Gastritis and duodenitis

Non-insulin: it di mell Mali it I without specific . in. 1 i
" itus ation of site Diseases of pancreas Insulin-dependent diabetes mellitus
Other anaemias Other anaemias Secondary mallgnant neoplasmiofires Other anaemias

piratory and digestive organs

Feature contributions - No exclusion (US-VA)

Cancer in 0-6 months

Cancer in 6-12 months

Cancer in 12-24 months

Cancer in 24-36 months

Acute pancreatitis

Acute pancreatitis

Abdominal and pelvic pain

Diabetes mellitus

Abdominal and pelvic pain

Diabetes mellitus

Other diseases of biliary tract

Other diseases of liver

Other diseases of biliary tract

Other diseases of biliary tract

Diabetes mellitus

Persons encountering health services
in other circumstances

Diabetes mellitus

Symptoms and signs concernin
Y pfood and ﬂgidintake 9

Persons encountering health services
in other circumstances

Abdominal and pelvic pain

Other diseases of pancreas

Persons encountering health services
in other circumstances

Acute pancreatitis

Other diseases of biliary tract

Symptoms and signs concerning
food and fluid intake

Malignant neoplasm of trachea,
bronchus or lung

DeFendEnce QfODIOI?‘S, fedatwes,
cocaine, cannabinoids, hall licinogens,
or other psychoactive substantes

Nausea and vomiting

Disorders of social functioning with
onset specific to childhoos
and adolescence

Abdominal and pelvic pain

Abuyse of alcohol, tobacco, oﬁi"éd .
Sfdatives, cocairie cannabg_l 0ids,
hallucinogens, %r other psyd oactive
substance:

Abuse of alcohol, tobacco, opioids,
atives, cocaine, cannabjhoids,
hallucinogéns, or other psychoactive
substance:

Essential (primary) hypertension

Other diseases of pancreas

Cough, haemorrhage from
respiratory passages

Unspecified jaundice, or skin
eruption

Persons encountering health services
in other circumstances

De?endence of opmiﬂs, feda'ﬂves,
cocalne, cannahinoids, hal gcmogens,
or other psychoactive substances

Secondary mahgnant neoplasm of
respiratory and digestive organs

Cataract

Examination and observation
for other reasons

ICD-10 chapters

Neoplasms

Other dermatitis

organs and certain disorders involving ti

Cataract

DeFendence o_fop&ol?_‘s, fedatives,
cocan{,canna inoids, hallucinogens,

or other psychoactive substantes

behavioral

Diseases of the blood and blood-forminﬁe o Endgerine. nutritional and netabolic o Mental and

immune mechanism

Vil Diseases of the eye and adnexa ° Diseases of the circulatory system

Diseases of the skin and
subcutaneous tissue

diseases

disorders

o Diseases of the digestive system

with health services

Symptoms, signs and abnormal clinical and Factors influencing health status and contact
laboratory findings, not elsewhere classified




Counts (x1000)
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ATC drug groups in 1.1 billion male and female

GP prescriptions accor
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A Trajectory network

ATC group

@ alimentary tract and metabolism antineoplastic and immunomodulating agents

(@ musculoskeletal system

@ nervous system

(@ antiparasitic products, insecticides and repellents
genito-urinary system and sex hormones () respiratory system
systemic hormonal preparations © sensory organs

@ antiinfectives for systemic use @ various

(® blood and blood forming organs
(@ cardiovascular system
(®) dermatologicals

Aguayo Orozco et al.,
Npj Digital Medicine, 2021



Dosage-trajectories in in-hospital polypharmacy analysis

All inpatient admissions in
Capital Region of Denmark
(12 hospitals), 2008-2016

N patients 1,069,873

N admissions 3,161,647 (54% F)
N drug prescriptions 24,379,285

N drugs, median (IQR) 6 (3-11)

Age, median (IQR) 59 (36-73)

Polypharmacy is positively correlated with age (Pearson p:0.40)

1 2-4 5-8 10+

Medication burden (no. drugs)

The degree of polypharmacy varies across different primary diagnoses

I: Infections
IX: Cardiovascular
X: Respiratory diseases

XV, XVI: Pregnancy and perinatal
- | XVII: Congenital diseases
VIII: Ear and mastoid processes

+

n (]
(=] o

Medication burden (no. drugs)
>

5
5
5 4 5
4
4
é i i é
2
I Vi vik vl IX X XI Xl X XV XV XVE XVIE XVIHE XX XX XXI

o

Leal et al.
Npj Digital
Medicine, 2023



From 185 M treatment episodes to co-medication pairs

v

.....................................................

A(B) B(A) C(A)
+ Rx1 Rx2 Rx3 D/C Rx1 D/C + Rx2 Rx3 D/C + Rx1 D/C

M @w M

A(C) B(C) C(B)

185M concomitant treatment episodes
413 index drugs: 77,494 co-medication pairs — 3,993 pairs with significant dosage changes



83% of the co-medication pairs with significant dosage changes are
associated to known Drug-Drug Interactions

309 drugs and 3,993 co-medication

pairs with odds ratio > 1 I n creased
proportion of
287 drugs 174 drugs R 3y — anthIOtICS and
3,297 co-medication pairs 696 co-me dication pairs 3 R % oggy
with known DDI with unknown DDI P Vi, musculoskletal
1y drugs, lower in
% nervous and
. cardiovascular
. system drugs
s 7 PG A
7)1/
N\ @ | \ 3
\ f gaagmm
| |
¢ Collection of 15 DDI
databases

696 pairs within known DDIs had lower patient volume, were
less described together in the literature and had higher ORs

Identification of drug pairs
associated with dosage

adlustments a p-value = 6.28e-18 b p-value = 1.52e-14 Cc p-value = 2.44e-19
0

100,000 ]
Co-mentioning 5 oo ;
u— x 3
PubMed, g H s ° Leal et al.
Characterization of pairs in MEDLINE, DTU 5 1o H £ . N
terms of DDIs and discovery Corpus = H N PJ Dlgltal
of unknown DDls

L % Medicine, 2023

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD



The Danish Disease Trajectory Browser:
http://dtb.cpr.ku.dk

Siggaard et al., Nature Comm, 2020

Inf ti
Deasan TRAROTORY seANCEE
Data from: Danish National Patient

Register (Landspatientregisteret)
SEARCH:

FILTERS ~

EDGE ANNOTATION:

Population: ~8,900,000 people

PATIENTS | RELATIVE RIS
NODE ANNOTATION:

) INSTANT SEARCH
@ PERFORMANCE ISSUES?



http://dtb.cpr.ku.dk/

A population-wide health and deep learning models

* Health data driven:
» Redefine phenotypes as trajectories
e Re-assign patients to the proper sub-category
* Enable prediction using trajectories
* Handle life long data capture
* ”Live data” versus data dumps versus traditional registers
* Progression biomarkers versus disease risk biomarkers

* Include what is not in the hospital patient records in new ways:
* Diet
* Genetics
* GP events
* |ncome, ...
* Education, grades in exams, ...
* Wearable data (partly EHR included)
* Patient generated data
* Smart meter data
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Real-time registries:
Danish Nat

ional

Patient Registry

Table 1

Key differences between LPRz and LPRz2

I I [

Mo direct description of heath and disease
courses exists, instead every contact appears

s contact coneicte of pati
identification, diagnoses, procedures, and
related information

All putpatient care contacts fvsits] are report-
ed as ane main diagnosis code with a start and
&nd date, and sach visit in the course & anly

Additianal infarmation level which brings all con
tacts, diagnoses, and procedures as well as related
course markers® and triggered result repons** ina
coherent health and disease course, see Figure 1.

Far each course there |53 specific course label
which typifies the current independent cours
~£0PD", “type-2 diabetes”, "cancer”.

eg,

Every contact hetween the patient and the heaith
care system is Independent such as dlagnostic,
observation, treatment, counselling and is reges-
tared the exact time of the vt

avist
the actual duration of the visit. Thes means that
LFR2 do not contain infarmation an what the
diagnesis & on a ghven vist date.

Diagneses, operations, and treatments are re-
ported based an the health care classification
system (SKS).

Type of patient contact & reported as outpa
tient, emergency of in patient

The content of the data is nat the same for
the publc and private hospitals. It dependson
whether i is reported directly to LFRz ar via
the 30 called "MiniPas”.

Mandatary to add Sk cades in connection
with reparting of supplementary infarmation

{8.g, for births and cancer) and varnous types

af markers [e_q., for waiting time and package
affers).

tdown to secands) including it specific diagnoses
andfar procedure codes (but still with the poss:
bility to link these elements 1o a specific daease
course).

In LPR3, the framewark for which SKS codes can
be used in reporting is based on code lists. This
list & cantinuously updated with new codes when
needed. The code btz place restriction an the use
of $KS codes og., dates of valdity.

The kst is particularly important for the validation
of the reporting, which will be mere flexible and
easierto maintain.

This s nat distinguished in LPR3. Instead, the
duration of each contact is registered alang with in-
formatian about type of cantact (physical, virtual,
external cantact, death, or diagnosiz recarding). By
st of thes Information, 115 stll possible tomaie
the distinction comparable to the LP#z patient
Eype if needed.

The reposting reguirements are now dentical for
the public and the private clinics including data
from paychiatry.

The mandatary additional information (s generally
built in a3 foxed elements in the reporting (s.g.,

a3 resuhts in registration of results or s course.
markers)*s.

There & no requirement for adational coding in
LP#3, but it s passible ta report addtional codes
for diagnoses and procedures.

Real time markers based on legislatian and palitical decizions about regsstration e.q., packages affer in Cancer treatment
Results reparts are triggered iy course markers, contacts, dignases, and procedures and farwards the mandatory reparts

and notdications.

https://quantifyresearch.com/wp-content/uploads/2022/10/LPR3-
Introducing-the-new-and-improved-Danish-patient-register.pdf

Diagnosis

Figure 1 Concept model of LPR3inc
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